Part Number Hot Search : 
2SD19 SMBJ33 DTQS3 BF451 FR107 1733L R1515 ACE3000
Product Description
Full Text Search
 

To Download V23990-P718-G-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p718-*-pm flow 90con 1 1600v/50a 3~ phase input rectifier with or withot brc *optional half controlled compatible with flow 90pack 1 support designs with 90 mounting angle between heatsink and pcb clip-in pcb mounting motor drives servo drives V23990-P718-G-PM v23990-p718-g10-pm half controlled v23990-p718-h-pm w/o brake v23990-p718-h10-pm half controlled, w/o brake tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 52 t c = 80c 71 t h = 80c 61 t c = 80c 92 m aximum junction temperature t j max 1 5 0 c input rectifier thyristor repetitive peak reverse voltage v rrm 1600 v sin e,d=0.5 t h =80c 43 t j = t j max t c =80c 50 s urge forward current i fsm 620 a i 2 t 19 20 a 2 s t h =80c 6 0 t c = 80c 91 m aximum junction temperature t j max 15 0 c 3610 t j =45c t j =t j max features flow 90 housing target applications schematic t p =10ms 85 0 a types i 2 t-value maximum ratings i fav a 2 s i fsm condition dc current tj=45c t j =t j max t p =10ms a w a w input rectifier diode forward average current i 2 t-value fo rward current per diode surge forward current i 2 t p o wer dissipation per thyristor p tot i fav p tot power dissipation per diode copyright vincotech 1 revision: 3
v23990-p718-*-pm tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition brake igbt t h =80c 31 t c = 80c 40 t h = 80c 73 t c = 80c 11 0 t sc t j 150c 1 0 s v cc v ge =15v 1 2 00 v brake inverse diode t h =80c 8 t c =80c 8 t h =80c 2 0 t c = 80c 30 brake fwd t h =80c 14 t c = 80c 19 t h = 80c 2 9 t c = 80c 44 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 1200 maximum junction temperature t j max 1 5 0 v rrm dc forward current p tot brake inverse diode t j =t j max v a v c w a c ollector-emitter break down voltage t p limited by t j max p u lsed collector current gate-emitter peak voltage maximum junction temperature short circuit ratings dc collector current power dissipation per igbt peak repetitive reverse voltage repetitive peak forward current i frm a a t j =t j max t p limited by t j max w a w v c v a v r rm v ge i f t j =t j max t j max p tot power dissipation per diode p tot t j =t j max t j =t j max d c forward current i f repetitive peak forward current i frm t p limited by t j max v ce i cpuls t j =t j max i c peak repetitive reverse voltage c m aximum junction temperature t j max 1 5 0 c storage temperature t stg -40+125 c 1 200 6 clearance insulation voltage creepage distance t op operation temperature under switching condition - 40+(tjmax - 25) 1200 30 105 20 150 copyright vincotech 2 revision: 3
v23990-p718-*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,23 1,5 tj=125c 1,21 tj=25c 0,92 tj=125c 0,81 tj=25c 5,0 tj=125c 6,8 tj=25c 0,05 tj=125c thermal resistance chip to heatsink per chip r thjh 1,15 tj=25c 1 1,36 1,9 tj=125c 1,38 tj=25c 1,00 tj=125c 0,89 tj=25c 0,01 tj=125c 0,01 tj=25c 0,05 tj=125c 5 i g =0,5a tj=25c 2 v d =1/2 v drm tj=125c tj=25c tj=125c tbd. v d =2/3 v drm linear voltage rise 1000 v d =2/3 v drm i g =0,45a; f=50hz 500 tj=25c tj=125c 150 tj=25c 75 tj=125c i g =0,45a tj=25c 125 tp=10 s tj=125c tj=25c 1,5 tj=125c tj=25c 50 tj=125c 0,2 5 thermal resistance chip to heatsink per chip r thjh 1,16 tj=25c 5 5,8 6,5 tj=125c tj=25c 1,3 2,11 2,25 tj=125c 2,40 tj=25c 0,25 tj=125c tj=25c 650 tj=125c 6 tj=25c 56 tj=125c 56 tj=25c 19 tj=125c 26 tj=25c 492 tj=125c 577 tj=25c 109 tj=125c 167 tj=25c 2,06 tj=125c 2,42 tj=25c 1,79 tj=125c 2,79 thermal resistance chip to heatsink per chip r thjh 0,96 v v pf tj=25c tj=25c 205 115 0,0015 35 35 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage collector-emitter cut-off incl diode gate emitter threshold voltage r gint turn-off energy loss per pulse q gate gate charge input capacitance rise time turn-off delay time t d(off) reverse transfer capacitance e off turn-on energy loss per pulse turn-on delay time t f fall time t d(on) t r i gd v d =2/3 v drm thermal grease thickness 50um = 0,61 w/mk c oss e on output capacitance c rss c ies integrated gate resistor k/w nc brake igbt gate non-trigger current cr i tical rate of rise of off-state voltage (di/dt)cr r t i r (dv/dt)cr t gr slope resistance (for power loss calc. only) critical rate of rise of on-state current gate controlled rise time reverse current gate trigger voltage gate non-trigger voltage gate trigger current i l latching current v gd i gt value conditions v gt characteristic values forward voltage t h reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 59 59 k / w v v m ma rev erse current i r input rectifier thyristor forward voltage v f threshold voltage (for power loss calc. only) v m 35 0,0 48 v v to gate controlled delay time t gd v d =2/3 v drm circuit commutated turn-off time tp=200 s v d =6 v holding current i h t q v d =2/3 v drm thermal grease thickness 50um = 0,61 w/mk i ges rgoff=16 rgon=32 v ce =v ge v d =6 v 1200 1500 35 59 v d =6 v tp=200 s v d =6 v thermal grease thickness 50um = 0,61 w/mk 42 4 2 1 00 tj=150c tj=150c 15 0 0 f=1mhz 15 20 mws 0 ma na n s 1 200 600 25 v ma k/w 132 2530 ma v a/s s s v/s ma s ma ma tj=150c tj=150c copyright vincotech 3 revision: 3
v23990-p718-*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max va lue con ditions characteristic values tj=25c 1 1,60 2,2 tj=125c 1,57 thermal resistance chip to heatsink per chip r thjh 3,22 k/w tj=25c 1 2,07 2,3 tj=125c 2,45 tj=25c 250 tj=125c tj=25c 16,77 tj=125c 17,11 tj=25c 332 tj=125c 505 tj=25c 1,79 tj=125c 2,78 di(rec)max tj=25c 495 /dt tj=125c 210 tj=25c 1,79 tj=125c 2,78 thermal resistance chip to heatsink per chip r thjh 2,40 rgon=32 mws c v v a ns a / s a k/w 25 brake inverse diode peak rate of fall of recovery current pe a k reverse recovery current reverse recovered charge diode forward voltage v f reverse recovery energy v f i r t rr q rr e rec reverse recovery time i rrm thermal grease thickness 50um = 0,61 w/mk 15 d iode forward voltage reverse leakage current brake fwd thermal grease th i ckness 50um = 0,61 w/mk 15 1 5 3 25 300 300 copyright vincotech 4 revision: 3
v23990-p718-*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics typi cal output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 bra ke igbt figure 4 brake fwd typical transfer characteristics ty pi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v brake 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 3
v23990-p718-*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 60 0 v v ce = 60 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a r goff = 16 fi gure 7 br a ke igbt figure 8 brake igbt typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 6 0 0 v v ce = 60 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,2 0,4 0,6 0,8 1 1,2 1,4 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0, 2 0,4 0,6 0,8 1 1,2 1,4 0 20 40 60 80 100 120 140 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 1 2 3 4 5 6 7 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 1 2 3 4 5 6 0 2 0 40 60 80 100 120 140 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 r e v ision: 3
v23990-p718-*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ce = 60 0 v v ce = 60 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a r goff = 16 fi gure 11 br a ke igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = tp / t d = tp / t r thjh = 0 , 96 k/w r thjh = 2, 40 k/w brake t doff t f t don t r 0,001 0 , 01 0,1 1 0 10 20 30 40 50 i c (a) t ( m s) t doff t f t don t r 0,001 0 , 01 0,1 1 10 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 7 r e vision: 3
v23990-p718-*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc v ge = 15 v figure 15 br a ke fwd figure 16 brake fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc brake 0 20 40 60 80 100 120 140 160 0 30 60 90 120 150 t h ( o c) p tot (w) 0 10 20 30 40 50 0 30 60 90 120 150 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 30 60 90 120 150 th ( o c) p tot (w) 0 5 10 15 20 25 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 8 revision: 3
v23990-p718-*-pm figure 1 brake inverse diode figure 2 brake inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = tp / t r thjh = 3, 22 k/w figure 3 bra ke inverse diode figure 4 brake inverse diode power dissipation as a for w ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc brake inverse diode 0 5 10 15 20 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 0 30 60 90 120 150 th ( o c) p tot (w) 0 2 4 6 8 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 9 revision: 3
v23990-p718-*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 1, 15 k/w figure 3 re c tifier diode figure 4 rectifier diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc input rectifier diode 0 20 40 60 80 100 0 0,5 1 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 120 140 0 30 60 90 120 150 t h ( o c) p tot (w) 0 20 40 60 80 100 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 10 revision: 3
v23990-p718-*-pm figure 1 thyristor figure 2 thyristor typical thyristor forward current as thyr istor transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 1, 16 k/w figure 3 th y ristor figure 4 thyristor power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc thyristor 0 10 20 30 40 50 60 0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 30 60 90 120 150 0 30 60 90 120 150 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 30 60 90 120 150 t h ( o c) i f (a) t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 1 1 r evision: 3
v23990-p718-*-pm figure 5 thyristor gate trigger characteristics thyristor t j =25 o c i g (a) v g (v) 10 1 10 2 10 0 10 - 10 - 10 2 10 - t j =125 o c 10 0 10 1 10 - t j =-40 o c 20v;20 ohm v gt i gt i gd 50w (0,5ms) 75w (0,1ms) 25w (8ms) p g (t p ) v gd copyright vincotech 12 revision: 3
v23990-p718-*-pm t j 125 c r gon 4  r goff 4  figur e 1 ou t put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of tdoff, te off turn-on switching waveforms & definition of tdon, teon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 1 5 v v ge (0%) = -1 5 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 10 0 a i c (100%) = 10 0 a t doff = 0 , 29  s t don = 0, 11  s t eoff = 0, 67  s t eon = 0, 39  s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 10 0 a i c (100%) = 10 0 a t f = 0 , 11  s t r = 0, 03  s switching definitions output inverter general conditions = = = i c 1% u ce 90% u ge 90% -20 0 2 0 4 0 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff u ce i c u ge ic 10% u ge10% t don u ce3% -20 0 20 4 0 60 80 100 120 140 160 180 200 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 5,7 time(us) % i c u ce t eon u ge fitted i c10% i c 90% i c 60% i c 40% -20 0 2 0 4 0 60 80 100 120 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 time (us) % u ce i c t f i c10% i c90% -20 0 20 4 0 60 80 100 120 140 160 180 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 5,7 time(us) % t r u ce i c copyright vincotech 1 3 r evision: 3
v23990-p718-*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 59 ,91 kw p on (100%) = 59 ,91 kw e off (100%) = 8, 87 mj e on (100%) = 12 ,48 mj t eoff = 0, 67 s t eon = 0, 39 s figure 7 ou t put inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 60 0 v i d (100%) = 10 0 a i rrm (100%) = -8 3 a t rr = 0, 51 s switching definitions output inverter i c 1% uge90% -20 0 20 40 60 80 100 120 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 time (us) % p off e off t eoff u ce3% u ge10% -20 2 0 6 0 100 140 180 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -120 - 8 0 -40 0 40 80 120 4,7 4,9 5,1 5,3 5,5 5,7 5,9 6,1 time(us) % i d u d fitted copyright vincotech 1 4 r evision: 3
v23990-p718-*-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 1 0 0 a p rec (100%) = 59 ,91 kw q rr (100%) = 20 ,73 c e rec (100%) = 7, 85 mj t qrr = 1, 03 s t erec = 1, 03 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 time(us) % i d q rr -20 0 20 40 60 80 100 120 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 time(us) % p rec e rec t erec copyright vincotech 1 5 r evision: 3
v23990-p718-*-pm in datamatrix as in packaging barcode as without thermal paste 12mm housing p718-g p718-g without thermal paste 12mm housing p718-g10 p718-g10 without thermal paste 12mm housing p718-h p718-h without thermal paste 12mm housing p718-h10 p718-h10 pin table pin x y 1 53 0 2 50,1 0 3 47,2 0 4 40,2 0 5 37,3 0 6 34,4 0 7 27,4 0 8 24,5 0 9 21,6 0 10 18,7 0 11 15,8 0 12 12,9 0 13 7,1 0 14 0 0 15 0 7 16 3 7 17 7 7 18 9,9 7 19 12,8 7 20 44 7 21 47 7 22 50 7 V23990-P718-G-PM v23990-p718-g10-pm v23990-p718-h10-pm pinout o r dering code & marking ordering code and marking - outline - pinout version v 2 3990-p718-h-pm outline ordering code copyright vincotech 16 revision: 3
v23990-p718-*-pm disclaimer l i fe support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 17 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-P718-G-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X